Using constraints in relational subgroup discovery

نویسنده

  • Filip Železný
چکیده

Relational rule learning is typically used in solving classification and prediction tasks. However, it can also be adapted to the description task of subgroup discovery. This paper takes a propositionalization approach to relational subgroup discovery (RSD), based on adapting rule learning and first-order feature construction, applicable in individualcentered domains. It focuses on the use of constraints in RSD, both in feature construction and rule learning. We apply the proposed RSD approach to a real-life telecommunications dataset.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Patterns: Theory and Practice of Constraint-Based Relational Subgroup Discovery

This paper investigates local patterns in the multi-relational constraint-based data mining framework. Given this framework, it contributes to the theory of local patterns by providing the definition of local patterns, and a set of objective and subjective measures for evaluating the quality of induced patterns. These notions are illustrated on a description task of subgroup discovery, taking a...

متن کامل

RSD: Relational Subgroup Discovery through First-Order Feature Construction

Relational rule learning is typically used in solving classification and prediction tasks. However, relational rule learning can be adapted also to subgroup discovery. This paper proposes a propositionalization approach to relational subgroup discovery, achieved through appropriately adapting rule learning and first-order feature construction. The proposed approach, applicable to subgroup disco...

متن کامل

Subgroup Discovery Using Bump Hunting on Multi-relational Histograms

We propose an approach to subgroup discovery in relational databases containing numerical attributes. The approach is based on detecting bumps in histograms constructed from substitution sets resulting from matching a first-order query against the input relational database. The approach is evaluated on seven data sets, discovering interpretable subgroups. The subgroups’ rate of survival from th...

متن کامل

Relational Pattern and Subgroup Discovery in CAD documents

In our recent work [1], we have dealt with frequent pattern discovery in CAD designs using a novel approach to integration of hierarchical background knowledge to relational data mining. This paper extends the previous work by applying the methodology of subgroup discovery which first seeks frequent structural patterns in CAD designs and then discovers interesting (large and class-biased) desig...

متن کامل

Relational Subgroup Discovery for Gene Expression Data Mining

We propose a methodology for predictive classification from gene expression data, able to combine the robustness of highdimensional statistical classification methods with the comprehensibility and interpretability of simple logic-based models. We first construct a robust classifier combining contributions of a large number of gene expression values, and then search for compact summarizations o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003